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Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the
Z-scheme. Both of these pigment–membrane protein complexes are found in cyanobacteria, algae, and plants.
Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as
other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosyn-
thetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of
PSIwhere the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled
catalyst to yield H2. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged
to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been
immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel
reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting
steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight
these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobi-
lization/orientation strategies, and artificial redoxmediators. Collectively this work has been able to maintain an
annual increase in photocurrent density (A cm−2) of ~10-fold over the past decade. The potential drawbacks and
attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an
environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This
article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

© 2013 Published by Elsevier B.V.
1. Introduction

Photosynthetic reaction centers are chlorophyll (Chl) pigment–
protein complexes capable of converting light energy into a stable
charge separation. In oxygenic photosynthesis, Photosystem II (PSII)
and Photosystem I (PSI) work in series to couple the splitting of water
with the reduction of ferredoxin [1]. Whereas PSII has evolved to have
a strong oxidizing potential, PSI has evolved to have a low potential
acceptor that is capable of reducing NADP+ via the soluble Fe/S protein
ferredoxin and the flavin protein FNR. In plants, some algae, and some
cyanobacteria, the electron donor to photo-oxidized PSI (P700+ ) is plasto-
cyanin, while in other cyanobacteria and algae a soluble c-type
cytochrome (cyt c6 or cyt c553) serves as the donor [2]. There are
many excellent reviews that cover the kinetics and thermodynamics
of electron transfer of PSI [3–9], which are shown in Fig. 1.
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Considerable interest has recently been directed to the utilization of
its charge separation with applied goals in solar energy applications
such as hydrogen production [10,11] and generation of photocurrent
in photovoltaic devices [12,13], exploiting the robust and highly
efficient nature of PSI [14]. There have also been similar advances in
the use of PSI for light driven hydrogen production and are addressed
in other recent papers [11,15,16]. In this review we cover many of the
recent advances in the utilization of PSI for photovoltaic purposes.

2. Powers and versatility of PSI reaction centers

PSI is an example of a Type I reaction center which has a different
acceptor system than Type II reaction centers [17]. For example, Type I
reaction centers, in contrast to the dual quinone acceptors, QA and QB,
in the Type II reaction centers of purple bacteria and Photosystem II,
have an FeS center that functions as the first stable acceptor (shown
as FX in Fig. 1). This is similar to the reaction centers found in the
green sulfur bacteria [18] and the heliobacteria [19]. Another feature
of the Type I reaction center is that the special pair, P700 produces a
much stronger electron donor when excited and P700* has a midpoint
potential of −1.3 V whereas P870* and P680* are found in the purple
bacteria and PSII only have midpoint potentials of −600 mV [20] and
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Fig. 1. Kinetics of electron transfer in PSI. After light excitation of P700 to P700*, electrons
travel downstream in energy to cofactors A0, A1, FX, FA, and FB. Forward electron transfer
lifetimes are shown (solid black arrows) on a log scale (x-axis) with the midpoint poten-
tial (mV) of the cofactors shown on the y-axis. Backward electron transfer (charge recom-
bination) lifetimes are shown (dashed arrow) from cofactors back to P700.
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−650 mV [21], respectively. This more negative potential not only is a
result of the chemical nature of the special pair but is also a consequence
of the protein environment that coordinates these pigments and
acceptors. The strong reductant produced by P700* allows this reaction
center to directly drive the reduction of protons into H2 via a hydro-
genase [22,23] or nanocatalyst [10,24,25].

These properties make PSI the source of the most powerful
reductant in biological electron transfer [14,26–28]. It is this strikingly
large negative midpoint potential that has attracted our lab and others
to investigate the use of PSI as the preferred electron donor for applied
photosynthetic purposes such as photosynthetic hydrogen production
and photovoltaics [24,25,29–38]. Another interesting feature of PSI is
the observation that the redox potential of the primary electron donor
P700 special pair can vary considerably between organisms [39]. Using
comparative biochemical analysis their work has demonstrated that
P700 can have a potential that varies by over 70 mV. This work also
suggests that the molecular environment of P700 may be quite respon-
sive to bioengineering such that the energy levels of the primary charge
separation may be “tuned” to the energy levels of either the electron
donor or the electron acceptor. This ability to adjust the energy levels
may be used to both enhance the kinetics of electron transfer as well
as reduce the loss of free energy due to large over potentials. This poten-
tial versatility in electrochemistry will enable new, non-biological
materials to be incorporated into future device design.

Finally, another attractive feature of PSI is the recent demonstration
that the absorption properties of this reaction center can be varied
based on the chlorophyll composition and the organism from which it
is isolated. For example, it was shown in Acaryochloris marina, which
contains predominately Chl d, the reaction center special pair P740
(most likely a dimer of Chl d [40]) is shifted ~40 nm to the red [41].
This finding would suggest that the discovery of more photosynthetic
organisms would enable the optical properties of PSI to be further
tuned. This is the precise design that has been invoked by a recent re-
viewbyBlankenship et al. [42]where they propose that a two photosys-
tem solar cell could be constructed to allow both the extraction of
electrons fromwater via a PSII-like or biomimetic system and hydrogen
production using a second, PSI-type reaction center. By shifting the ab-
sorption properties of PSI into the red region, these two photosystems
will not compete for the same spectral region and will thus be able to
harvestmore of the solar spectrum, enabling a higher external quantum
yield. It appears that PSI provides considerable variability both in its op-
tical properties and in its redox potentials thatmay help facilitate future
device design and optimization.
3. Structural advantages of using PSI in applied photosynthesis

3.1. Availability of high resolution structural data

Although the photosynthetic reaction center was the first
membrane protein to have its structure determined in 1984 [43,44], it
was nearly 20 years before the structure of PSI was determined at
2.5 Å [45] and several more years before the first PSII structure was
determined [46]. Both photosystem structures were determined initial-
ly from thermophilic cyanobacteria, Thermosynechococcus elongatus or
closely related organism Thermosynechococcus vulcanus. T. elongatus
for example, has many advantages such as a fully sequenced genome,
amenability to genetic transformation, and ability to undergo homolo-
gous recombination.

In most cyanobacteria the PSI complex is a trimer as shown in
Fig. 2A. As a trimer, the MW of PSI is nearly a megadalton, and each
monomer contains 12 subunits (PsaA–F, PsaI–M, PsaX) and many
cofactors, including 22 carotenoids, 96 chlorophylls, 2 phylloquinones,
3 Fe4S4 clusters, 4 lipids, and ~200 water molecules. More recent work
has indicated that the trimer may contain over 330 chlorophyll
molecules [47]. In addition to the high-resolution X-ray structure of
PSI, there are many TEM single particle structures [48,49] and even
some high-resolution AFM structures of the PSI complex in native
membranes [50,51].

Recently, time resolved crystallography has been performed using
femtosecond X-ray protein nanocrystallography. This method uses
very bright femtosecond pulses from a hard-X-ray free-electron laser
to generate a large number of single-crystal X-ray diffraction patterns
that each provides a “snapshot” of the protein as a function of time
[52], which would allow the capture of millions of diffraction patterns
from individual PSI nanocrystals. This technique also has the potential
to avoid the significant problem of radiation damage characteristic of
normal X-ray crystallography since the laser pulses are too short to
generate degradation. This advantage is particularly attractive to photo-
synthetic complexes since they are particularly sensitive to radiation
damage.

In addition to the cyanobacterial PSI complex, there have also been
several structures determined from higher plants. The first structure
from Pisum sativum var. Alaska was resolved to 4.4 Å resolution
(Fig. 2B) [53]. A higher resolution was later achieved using a PSI
complex from spinach to a resolution of 3.4 Å [54]. Both of these struc-
tures were part of a supercomplex that contained both the PSI reaction
centers as well as four of the light harvesting complexes, LHCPa–d.
Collectively, this complex contained 17 protein subunits, 168 chloro-
phylls, 2 phylloquinones, 3 Fe4S4 clusters and 5 carotenoids. Unlike
trimers found in cyanobacteria, higher plant PSI complexes exist in
nature as a monomer (Fig. 2).

Finally, there are many structures of the individual subunits made
available byNMRorX-ray analysis,whichprovide insight into the struc-
tural determinants of redox potentials and/or the individual protein
dynamics. These reports include the primary donor cytochrome c6
[55], the soluble electron acceptors ferredoxin [56] and flavodoxin
[57] and finally the individual stromal domain subunits PsaC [58],
PsaD [59], and PsaE [60].

As a result of this abundance of X-ray, NMR, TEM, and AFM data, the
opportunity to make highly tailored site-directed mutations and gene
fusions is unsurpassed. This high level of structural insight combined
with the ever expanding molecular genetic tools for gene editing
[61–63] and the emerging tools for synthetic biology [64–66], provides
researchers with a tremendously powerful toolkit for manipulating PSI
for applied photosynthesis.

3.2. Surface access to electron acceptors

Regardless of the oligomeric nature of PSI, a common feature is the
presence of an extramembraneous domain known as the “stromal
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Fig. 2. PSI crystal structures. (A) PSI from cyanobacteria (Thermosynechococcus elongatus, PDB ID: 1JB0). M1-3 denotes individual monomers comprising the native trimer. Major subunits
are shown: PsaA (burgundy), PsaB (blue), PsaL (red), and other subunits (gray). (B) PSI from plant (Pisum sativum, PDB ID: 2O01). LHCI subunits are shown in teal (Lhca1-4) and LHCII in
violet. Major subunits are shown: PsaA (burgundy), PsaB (blue),PsaL (olive), PsaH (red), and other subunits (gray).

1555K. Nguyen, B.D. Bruce / Biochimica et Biophysica Acta 1837 (2014) 1553–1566
hump”. This domain protrudes out from the membrane and is
composed of three subunits, PsaC, PsaD, and PsaE. These subunits are
composed of loosely packed beta strands and some short alpha helices,
yet none of the subunits contain a membrane spanning element as
shown in Fig. 3. Fig. 4A–D shows that this domain is quite similar in
both cyanobacteria and higher plants.

Unlike the Type II reaction centers in purple bacteria and PSII,
the organization of the cofactors associated with electron transfer
(specifically FX, FA and FB) is quite close to the surface of PSI permitting
rapid electron transfer to the soluble electron transfer components fer-
redoxin and flavodoxin [67]. As shown in Fig. 3A–D these iron sulfur
centers are in close proximity to the surface of PSI. In fact the FeS centers
from both FA and FB are within 5–11 Å from the surface throughout the
stromal hump. This close distance will allow relatively rapid electron
transfer to a host of acceptors including not only the native electron
acceptor, ferredoxin/flavodoxin [67] but also non-native electron
acceptors such as MV [68] organic semiconductors such as C60 [69]and
inorganic semiconductors such as TiO2 and ZnO [33]. Some of these
electron acceptors are schematically shown in Fig. 5.

An additional advantage of the non-membrane spanning nature of
the stromal hump is the relatively straightforward means to replace
these subunits in vitro. This design feature of PSI provides many oppor-
tunities for further bioengineering since these subunits can be both
easily removed and replaced using Escherichia coli expressed proteins
in vitro (PsaC, PsaD and PsaE) [70–73]. This may allow the powerful
tools of synthetic biology in E. coli to be applied to PSI without having
to develop an entirely new synthetic biology toolkit for a photosynthetic
organism. In addition, certain mutations or subunit modifications that
may disrupt the photosynthetic process in vivo may still be obtained
via this in vitro re-assembly process, as was recently demonstrated
with the introduction of ZnO and TiO2 binding domains to PsaD and
PsaE of T. elongatus [12]. However, it may still be preferred to have
an in vivo method of making these changes since the process of re-
assembly may never be complete and could lead to heterogeneity in
the PSI complex, lowering the efficiency of a device.

3.3. Interaction with diverse electron donors

Although both PSI and PSII accept electrons from their lumenal
surface, PSI is distinct in that it is quite promiscuous in terms of a viable
electron donor. P680 in PSII, upon photo-oxidation, receives its electrons
from the oxygen-evolving complex that is attached peripherally to the
lumenal surface. Although this enables water to function as the electron
donor to PSII, it is also a relatively labile system, which is easily
photodamaged with a high turnover rate and must be repaired
frequently [74,75]. PSI on the other hand is much more robust and can
also accept electrons from a wide range of proteins including the native
electron donors, cytochrome c6 and plastocyanin [76], organic redox
compounds such as dichlorophenol indophenol (DCPIP) [77], synthetic
redox-active organometallic complexes such as Os(bpy)2Cl2 [78], Au
surfaces [79], self assembled alkanethiols attached to Au [80], and
graphene [81].

This ability to accept electrons from a diverse set of donors is shown
schematically in Fig. 5, and we demonstrate the re-reduction of P700
using some of these various donors after photobleaching via flash
photolysis (Fig. 6). However, in many cases these systems need to be
in a high molar excess to keep up with the rapid electron transfer
reactions with PSI. Future works will fine-tune both the electrochemis-
try and the interactivity of these systems to facilitate the highest PSI
turnover with the least energy loss due to an over potential.

3.4. Availability of multiple oligomeric forms

Interestingly, unlike the non-oxygenic, monomeric bacterial
reaction centers, photosynthetic reaction centers in oxygenic organisms
are found as monomers (plant PSI), dimers (all PSII), trimers (most
cyanobacterial PSI), and tetramers (few cyanobacterial PSI). Cyano-
bacterial PSI trimers have been reported in many published works
[49,82–92], and the only existing crystal structure of a cyanobacterial
PSI, from T. elongatus BP-1 (T. elongatus) [93], suggests that
cyanobacterial PSI preferentially forms a trimer. Supporting this idea
is the observation that cyanobacterial PSI trimers have been
reported in almost every subclass of cyanobacteria. The most well
characterized PSI trimers are from Synechocystis, Synechococcus, and
Thermosynechococcus, where PsaL is needed for PSI trimerization in
these cyanobacteria [94–97]. In contrast, plant PSI is monomeric in the
presence of PsaL, possibly due to interaction with the PsaH subunit
that is not found in cyanobacteria [98–100]. The fact that PSI can come
in two oligomeric states (monomer and trimer) provides an
advantage for increasing the density of PSI in a device. The trimer yields
a very high local concentration, yet due to its high molecular weight,
high coverage or penetration will be difficult. By using both the trimer
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Fig. 3. Accessibility of stromal iron–sulfur clusters. Backbone of Photosystem I is represented in cartoon-ribbons with emphasis on the stromal subunits PsaC (purple), PsaD (cyan), and
PsaE (blue). The inorganic electron transfer components forming the end of the internal electron transport chain are cubane [4Fe–4S] clusters, Fa and Fb, and are represented in space-
filling and colored by element Fe and S in brown and yellow respectively. Amino acids proximal to the clusters are represented as follows: AA's with α carbon ≤5 Å, N5–7 Å, N7–9 Å,
or N9–12 Å from Fa or Fb are in red, orange, yellow and green respectively. A.) PSI complex as seen from plane of thylakoid membrane facing “exposed” side of stromal subunits.
B.) PSI observed from membrane plane facing the “protected” side of the stromal subunits. C.) View of PSI from stromal side of the normal of membrane plane. D.) Detail view as in C,
with “protected” side facing upward and “exposed” side facing downward.
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and monomer forms of PSI, it may be possible to get increased cover-
age as demonstrated in Fig. 7. This configuration shows a random de-
position of PSI trimers on a gold surface that is then further treated
with a second deposition of PSI monomer, increasing the coverage
by 35%.
4. Thermotolerance and extended stability

One of the advantages of PSI is the availability of well-characterized
and easily cultivated thermophilic strains of cyanobacteria such as
T. elongatus [101]. This organism is capable of growth at temperatures
up to 60 °C and was the source of the first crystal structure for PSI
[45]. In addition, this protein complex has been shown to have a
thermotolerance of up to 70 °C based on the protein structure as
reflected by circular dichroism spectrometry [10]. This extreme
thermal tolerance may be an attractive trait when PSI is integrated
into various solid-state devices or solar cells that may be subject to
high temperatures during illumination. Moreover, it has been shown
that PSI isolated from both cyanobacteria and plants remains photo-
chemically active in a solid state for over 21 days [102], in an aqueous
hydrogen producing bioreactor for over 85 days [10], and in a wet elec-
trochemical cell for over 280 days [103]. It should be noted that in both
of these studies the activity of the PSI complex was nearly unchanged
after months of continuous testing. This robust stability makes it very
difficult to estimate the true functional longevity and stability of
PSI, however it is expected that it will be affected by various condi-
tions including spectral variations, light intensity, and temperature
[11].
5. Established ability to genetically engineer PSI in cyanobacteria

Oxygenic photosynthesis is the primary energy source on Earth,
capturing solar energy via absorption by Chl a/b, with water photolysis
as the electron donor providing reducing equivalents for the fixation of
atmospheric levels of CO2 into hydrocarbons. Cyanobacteria, commonly
called blue/green algae, containing only Chl a, are the only prokaryotes
capable of using solar energy to support oxygenic photosynthesis. As
prokaryotes, most of the well-established genetic tools of bacterial
genetics are applicable to cyanobacteria, making it considerably easier
to genetically engineer than eukaryotic photosynthetic organisms
such as green algae and plants. With this advantage, considerable
progress has been made over the past thirty years to engineer many
strains of cyanobacteria including but not restricted to themodel organ-
ism Synechocystis PCC #6803 [104–106]. More recently, however,
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the powerful tools of molecular and synthetic biology have been direct-
ed to bioengineering cyanobacteria for a host of new bioenergy
and environmental applications, including biohydrogen production
[107–112], advanced CO2 sequestration [113], production of next gene-
ration biofuels [114–117], and various bioactive/value-added compounds
[118–120].

Not surprisingly, one of the first areas to attract the application of
molecular biology and genetic engineering of cyanobacteria was the
ability to perform gene knockouts, gene replacement and site-directed
mutagenesis [121–123]. These techniques were broadly applied to the
analysis of the photosystems and in particular Photosystem I which
demonstrated the robust ability to bemanipulated. For example, nearly
all of the PSI subunits have been either deleted or genetically altered in
some form including PsaA/B [124,125], PsaC [126–128], PsaD, PsaE
[129,130], PsaF [131,132], PsaI [133], PsaJ [134,135], PsaK [136], PsaL
[122] and PsaM [136]. In addition, there has been considerable effort
to optimize both the interactions with the primary donors cytochrome
c6 and plastocyanin [137] and the terminal acceptor ferredoxin [138].
Future work on integrating PSI into photovoltaic devices will require
progress in bioengineering to facilitate specific attachment of the
reaction centers to different types of surfaces, including semiconductors
and catalysts [139,140].

6. PSI surface immobilization

The integration of redox proteins such as PSI into photo-
electrochemical devices requires immobilization strategies that ideally
would allow direct electron transfer between the electrode and
protein's active site(s) (e.g. PSI's P700/FB). Due to the dipole nature of
PSI, proper orientation on and proximity to the electrode surface appear
to be essential factors in attachment design. The conductive and semi-
conductive substrate surfaces used for PSI depositions have evolved
from the widely used Au to other materials including, TiO2, ITO, glass,
ZnO, alumina, and graphene.

The most commonly utilized strategies often involve the usage of
organothiol-based self-assembled monolayers (SAMs). For attachment
of PSI, SAMs can be terminated or functionalized with mercaptoacetic
acid/2-mercaptoethanol [141], nitrilotriacetic acid (NTA) [69],
alkanethiols [37,79,80,142], terephthaldialdahyde (TPDA) [143–145],
3-mercapto-1-propanesulfonic acid [146,147], aminoethanethiol
[145,148], and pyrroloquinoline quinone [149]. Because of the highly
variable design and attachment chemistries, we briefly summarize the
studies utilizing these variations below:

6.1. PSI on (Au)-based SAMs

Lee et al. 1997 [141]: Tested \OH, \COOH, and \SH terminated
SAMs to immobilize and control the orientation of 2D spatial arrays of
PSI on Au surfaces. They found that \OH terminated SAMs gave the
most desired, perpendicular orientation of PSI.

Das et al. 2004 [69]: To achieve oriented PSI assembly, recombinant
PsaD–His6 was immobilized on Ni2+–NTA functionalized Au surface.
This then was exposed to native PSI complexes where the intrinsic
PsaD subunit naturally exchanged with an excess of the recombinant
PsaD–His6, resulting in immobilization of PSI with P700 facing
away from the ITO/Au substrate. Peptide surfactants were also used to
increase PSI stability during and after assembly.

Ko et al. 2004 [79]: Examined the PSI to ω-functionalized and
n-alkanethiols gold surface adsorption based on surface composi-
tion. They concluded that the PSI-solubilizing agent, Triton X-100,
adsorbs to low-energy surfaces (hydrophobic SAM), and the PEG
groups of the Triton layer are very resistant to protein adsorption. This
inhibiting effect can be prevented by the addition of a more active
surfactant (e.g. dodecanol).

Frolov et al. 2005 [150]: Various cysteine mutations were made to
residues on the lumen exposed face of PSI to allow for direct thiol
coupling to the Au surface. Even with the mutations being placed in
an increasing distance from the P700 site, PSI attachment was achieved
with all mutants, suggesting that a specific location is not required as
long as the cystein is on an extramembranal loop of PSI's lumenal
surface.

Kincaid et al. 2006 [80]: In an attempt tomimic the natural thylakoid
membrane that surrounds PSI, this group immobilized PSI using
HOC6S/Au SAMs followed by a backfilling step to adsorb longer-
chained methyl-terminated alkanethiols in the interprotein domains to
displace the shorter, more unorganized HOC6S monolayer.
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Ciobanu et al. 2007 [142]: PSI adsorbed on hydroxyl-terminated
hexanethiol (HSC6OH) modified gold substrate showed an enhanced
reduction current for P700+ in the presence of light and methyl viologen.
They also saw that HSC8OH terminated SAMs formed a more ordered
monolayer than the HSC6OH monolayer. They were able to analyze PSI
functionality after adsorption by cyclic voltammetry, looking at signals
of FA, FB, and P700.

Faulkner et al. 2008 [143]: To address the issue of the labor intensive
and time consuming procedures required in previous studies to adsorb
PSI to SAMs, this group demonstrated that a vacuum-assisted method
can produce dense, oriented monolayers of PSI about 80 times faster
than the traditional solution adsorption techniques. This vacuum-
assisted method also enabled PSI assembly on other surfaces that
were resistant to protein adsorption.

Ciesielski et al. 2008 [144]: PSI was immobilized on the surface of
nanoporous gold leaf (NPGL) electrodes via covalent bonds between
the aldehydic groups of the TPDA-functionalized NPGL SAM and the
exposed lysines on PSI. The resulting photocurrent from the electrodes
was shown to be dependent on irradiating light intensity and dealloying
times of the electrode production.

Terasaki et al. 2009b [147]: PSI was bound on an Au/3-mercapto-1-
propane-sulfonic acid-SAM by electrostatic interactions. They were
Fig. 6. PSI-P700 reduction by various donors. Thermosynechococcus elongatus PSI (30 nM) electr
trometer, JTS-10), detecting at 705 nm. Donors individually tested include Os(bpy)2Cl2 (2 nM)
chrome (1 mM). Reaction mix also included 2 mM sodium ascorbate and 1 mMmethyl violog
able to show the ability of the PSI–Au electrode to act as a gate film in
FET sensoring for imaging devices.

Mukherjee et al. 2010 [31]: The deposition of PSI onto hydroxyl-
terminated alkanethiolate SAM/Au substrates was investigated with
the goal of having better control of the assembly morphology. They
showed that a lower PSI concentration, via electric-field deposition,
minimizes PSI aggregation while providing a more uniform coverage
onto the surface as compared to gravity-driven deposition methods.

Ciesielski et al. 2011 [145]: Dense monolayers of PSI were
immobilized to aminoethanethiol terminated SAMs functionalized
with TPDA (similar to that of Ciesielski et al. [144]). A mechanistic
model was developed for PSI immobilized SAMs, in which kinetic
and electrochemical parameters were used to predict photocurrent
densities. Discrepancies between simulated and experimental current
densities were discussed, along with a predicted conclusion that unless
at least 80% of the PSI was oriented the same way, the majority of the
photocurrent is nullified.

Mukherjee et al. 2011 [32]: Various immobilization conditions of PSI
onto SAM/Au substrates were tested. Conditions tested included
adsorption temperature, monomeric/trimeric forms of PSI, and type of
detergent used. A comparison was also made on the immobilization
characteristics when applying a gravity driven versus an electric field
on transfer rates were measured with a LED pump-probe spectrometer (Joliot Type Spec-
, recombinant T. elongatus cytochrome c6 (300 nM), DCPIP (1.2 μM), and horse heart cyto-
en, and 0.03% n-Dodecyl-β-D-maltoside in MES buffer (pH 6.4).
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assisted assembly technique. This study provided one of the few direct
demonstrations of the uniform orientation of PSI by using an immuno-
fluorescent detection strategy. This analysis can both provide a method
to quantitate the attachment density and confirm the predicted orienta-
tion based on the strong PSI dipole.

Efrati et al. 2012 [149]: CdS quantum dots (QDs) and PSI,
immobilized onto a pyrroloquinoline quinone (PQQ) monolayer linked
to Au electrodes were compared based on their anodic/cathodic
switchability of the photocurrents in the presence of different
photoelectrochemical configurations. They concluded that upon
irradiation under O2, the two systems gave rise to a potential-induced
control of anodic and cathodic directions in photocurrent.

Manocchi et al. 2013 [37]: By using an electrophoretic deposition
procedure, PSI assembly on alkanethiol SAMs was enhanced, and the
immobilized PSI density was easily controlled. SAM surface charge
composition, specifically MHO and MHA, greatly increased the amount
of bound PSI. This work demonstrated that there is some interaction
between the terminating group of the SAM and some surface property
of PSI. The stability of the PSI/SAM electrode was shown to be
maintained for a minimum of 3 h with illumination.
6.2. Other metal/conductive surface-SAMs

While gold has been the main conductive surface used in the above
studies, other materials like gallium (III) arsenide (GaAs) [151], titani-
um oxide (TiO2) [152], silicon (Si) [142], and graphene [81] have also
emerged as a suitable and attractive material for PSI devices.

Frolov et al. 2008b [151]: Cysteine mutant PSI was chemisorbed to
maleimide-functionalized GaAs SAMs. The dry-oriented junction
allowed for a non-aqueous system, and was still functional after one
year.
Nikandrov 2012 [152]: PSI was immobilized in a mesoporous TiO2

semiconductor matrix. The larger pore diameter of the TiO2 matrix
allowed for a high concentration of PSI to be immobilized, thus allowing
the complex to absorb high light.

LeBlanc et al. 2012 [142]: Conducted a systematic study on how both
n- and p-doped silicon can increase the photocurrent density of PSI
films. By comparing silicon doping types and densities, they concluded
that heavily p-doped silicon provided the best surface for PSI attach-
ment and photocurrent generation.

Gunther et al. 2013 [81]: First group to exploit the transparent and
highly conductive properties of graphene in PSI attachment. Graphene's
transparency is noted to be very attractive for the usage of high
concentrations of opaque mediators.

6.3. Carbon nanotubes/nanoparticles

While the previous studies looked at PSI functionality as a monolay-
er on a planar substrate surface, other works have investigated the
potential enhancement in photocurrent by utilizing (3D) nanostruc-
tured electrodes that provide an increased surface area, consequently
allowing for a greater deposition of PSI particles. These nanostructured
substrates such as nanoparticles (NPs) [153], nanowires [33], and
nanotubes [154,155] have been used for PSI attachment and increased
photocurrent in the following studies:

Terasaki 2006 [153]: Constructed PSI–gold nanoparticle hybrid
electrodes, by depositing gold NPs onto a planar gold substrate
followed by SAM formation by MPS. PSI was then electrostatically
adsorbed to the MPS modified electrodes.
Carmeli et al. 2007 [154]: Used cysteine mutants of PSI to bind
maleimide modified carbon nanotubes (CNTs) through a chemical
process on a gold electrode. Variations of this process also allowed
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for the construction of cross-junctions between two CNTs by a PSI
connection.
Kaniber 2010 [155]: Three different strategies for on-chip functional-
ization of CNT–PSI hybrids were demonstrated. The covalent attach-
ment utilized cysteine mutant PSI bonding to maleimide
functionalized CNTs. The second method proposed a hydrogen
bond formation between the amino groups of the ethylenediamine
functionalized CNT and cysteinemutant PSI treatedwith dithiothre-
itol. The final method exploited the electrostatic forces between the
positively charged regions on PSI and the CNTs negatively charged
terminal groups.
Mershin 2012 [33]: PSI was attached to two semiconducting
substrates (TiO2 and ZnO). PSI was physisorbed to TiO2 on FTO
coated glass and self assembled on ZnO nanowires with a PsaE–
ZnO replacement strategy.

6.4. Other PSI assemblies (multilayers, sol–gels, and redox polymers)

Aside from deposition of PSI monolayers directly onto surfaces, the
following works have demonstrated improved functionality, stability,
and photocurrent generation with the incorporation of PSI multilayers,
sol–gels, and redox polymers into their device fabrication schemes:

O'Neill and Greenbaum 2005 [156]: PSI was immobilized onto a clear
organosilicate glass reacted with a colloidal sol solution (sol–gel).
This sol–gel matrix, while enabling the entrapment of PSI, also of-
fered a stabilizing environment for other biomolecules such as
redox mediators, allowing their chemical reactivities to be retained.
In addition, the transparent nature of the matrix is an obvious
advantage in applications requiring full optical functionality of the
photoactive biomolecules.
Frolov et al. 2008a [150]: Serially-orientedmultilayers of PSI were as-
sembled on an Au electrode. This assembly was created with a
mutant PSI containing a lumen-exposed cysteine, which formed a
sulfide bond with Au to form the first layer. Platinum was then
deposited to the stromal face of PSI, allowing for the sequential
layer ofmutant PSI to form a sulfide bondwith the platinumpatches.
The highest photovoltage was achieved with the multilayer of
Au–PSI–Pt–PSI–Pt–PSI.
Ciesielski et al. 2010 [103]: Developed a photoelectrochemical
cell with multilayer assembly of PSI. A PSI suspension and liquid
electrolyte was injected into a reservoir held between a gold cathode
and a Cu-modified ITO anode.
Ciesielski et al. 2010b [148]: By mimicking stacked thylakoid struc-
tures, multilayers of PSI were formed through sequential deposition
of a liquid PSI suspension onto gold and glass substrates via a
vacuum-assisted assembly. PSI deposition of up to 7 layers was
shown to have a matching increase in absorption intensity and
photocurrent generation.
Kopnov et al. 2011 [157]: Tested the combinations of coupling PSII
and PSI in order to enable electron flow from water splitting at PSII
to reducing P700 of PSI. The variations included one protein in
solution and the other sol–gel encapsulated, both in solution, or
both sol–gel encapsulated. These implementations offered a simple
solution to the challenging task of utilizing both photosystems in
the same device, allowing the usage of water as the sacrificial
electron source.
Toporik 2012 [158]: PEG-treated PSI crystals were immobilized onto
ITO coated glass slides. Although photocurrent densities were not
reported, large photovoltages (~50 V) were seen, which would
be the largest reported for any inorganic material device. This
anomalous value was proposed to be a result of “electron trapping
in deep centers in the vicinity of the FB acceptor”, due to the packing
and alignment of PSI's dipole in the crystallized state.
Yehezkeli 2013 [159]: The redox polymer, poly-benzyl viologen
(PBV2+) was employed as an “interprotein glue” in the layered as-
sembly of PSI on a transparent ITO electrode. Increasing photocur-
rent was seen with the sequential addition of PSI–PBV layers up to
a maximum of 3 layers.

7. PSI stabilization/enhancement

While enhancements have been made to increase photocurrent via
surface modifications, variable redox mediators, and increased PSI
packing densities, it is also crucial to retain PSI's optical functionality
for an extended period of time in order for the device to be practical.
The following approaches tried to address themain issue of PSI's hydro-
phobic domains beingunnaturally exposed on the surface, causing rapid
protein degradation. In this regard, Kiley et al. [29] studied the effects of
various peptide detergents on PSI stability and function. They saw that
the designed peptide detergent, acetyl-AAAAAAK (A6K), stabilized PSI
for at least 3 weeks in the dry form. This discovery followed some initial
studies with peptide surfactants done by Das et al. [69]. Along this
line, Matsumoto et al. [30] studied a new class of designer peptide
surfactants (ac-I6K2-CONH2, ac-A6K-CONH2, ac-V6K2-CONH2, and
ac-V6R2-CONH2). They concluded by offering a guide to designing
future peptide surfactants for optimal stabilization of active PS-I. The
four main factors included: 1) an acetylated N-terminus 2) a short
hydrophobic tail consisting of 6 consecutive hydrophobic residues
3) 1-2C-terminal positively charged polar residues and 4) an amidated
C-terminus [30]. Another approach taken by Kincaid et al. [80]
attempted to mimic the natural thylakoid membrane that surrounds
PSI. After the immobilization of PSI using HOC6S/Au SAMs, they added
a backfilling step to adsorb longer-chained methyl-terminated
alkanethiols in the interprotein domains to displace the shorter, more
unorganized HOC6S monolayer.

The previous studies have analyzed PSI stability with techniques
probing for its optical properties, such as steady-state emission spectra
[29], fluorescence spectra [69], and reflectance absorption infrared
spectroscopy [80]; however Gerster et al. [160] were able to look at
the photocurrent generated by a single PSI molecule immobilized on
an Au surface. The immobilization of PSI between the substrate and
the metallized scanning near-field optical microscopy (SNOM) tip was
achieved with PSI cysteine mutations and the ability to control SNOM
tip to substrate distance by a high-resolution piezoelectric element.

Along with stabilizing and maintaining PSI's native optical proper-
ties, increasing the range of its absorption spectra has also been of
interest. Although having a quantum efficiency nearing unity, PSI is
still limited to absorbing about 1% of natural sunlight. Carmeli et al.
[161] were able to enhance PSI's light absorption capability with the
attachment of colloidal metal (gold and silver) nanoparticles, which
acted as optical antennas to functionalize more of the spectrum to
photons for P700 activation. They also described a new method that
enables a higher yield of PSI attachment to NPs.
8. Diffusible redox mediators/molecular wires

While the native donors to PSI are metalloproteins (plastocyanin or
cytochrome c553), the majority of these works employ the combination
of sodium ascorbate (NaAs) and 2,6-dichlorophenolindophenol
(DCPIP) to transfer the electron from substrate surface to PSI where
NaAs acts to keep a reduced pool of DCPIP for P700 reduction
[103,143,144,146,153,162–164]. The following complexes have
also been used for electron donation to PSI: reduced ferricyanide
K4Fe(CN)6 [148], osmium complexes (Os(bpy)2Cl2) [37,78], Z813
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Co(II)/Co(III) electrolyte [33], and ruthenium hexamine trichloride
(RuHex) [81].

In many studies an electron acceptor has also been used to prevent
the charge recombination reaction of electron flow from FB back to
P700 and transferring electrons to the opposing electrode. With a
midpoint potential of (−0.446 V vs SHE), methyl viologen (MV)
has been widely used to accept electrons from PSI FB (−0.58 V
vs SHE) [37,78,142,147]. Other notable acceptors used include a
naphthoquinone-derivative (NQC15) [146,162], oxidized K3Fe(CN)6
[148], and methylene blue [81]. Ciesielski et al. [148] showed that
Fe(CN)6 was able be used as both donor and acceptor, minimizing ET
components by oxidizing [Fe(CN)6]4− to [Fe(CN)6]3− at the lumenal
P700 interface and reducing [Fe(CN)6]3− to [Fe(CN)6]4− at the stromal
FB site.

After P700 photo-excitation, electron transfer follows the scheme of
P700 → A0 → A1 → FX → FA → FB, with these active cofactor sites
buried deep within PSI. The wiring of PSI to a substrate via an electron
transfer cofactor was attempted by Terasaki et al. [162], where the A1-
phylloquinone was extracted and reconstituted with a naphthoquinone-
derivate (NQC15) attached to Au NP. The NQC15 molecular wire has a
very similar length as the native A1, allowing the Au NP to be attached
near the PSI surface. This NQC15S–Au(NP)–PSI was then immobilized
with an Au\S bond via a SAM of 1,4-benzenedimethanethiol. By wiring
the A1 cofactor of PSI's electron transfer chain to the substrate surface,
the direct electron transfer was achieved from A1 to the electrode while
bypassing the FeS clusters (FX, FA, FB) in the stromal hump of PSI.
DCPIP and NaAs were also used for electron donation to P700. This group
further improved on this method with an A1 replacement using a
naphthoquinone-viologen linked compound (NQC15EV), where
the viologen had the appropriate redox potential (−0.446 V vs SHE) to
mediate electron transfer through the wire from A1 (−1.05 V vs SHE)
[146]. The use of methyl viologen at the end of the NQC15, instead of an
Au NP, increased the photocurrent by about 25 times as shown in
Table 1. With these two studies, Terasaki et al. were able to demonstrate
that electron transfer to an electrode is possible via a direct connection
from a PSI cofactor (A1), utilizing either a conductive metal NP (Au)
[162], or an electron mediator (MV) [146].

Miyachi et al. followed up on this A1-phylloquinone replacement
methodwith a study that demonstrated how the addition of two surfac-
tants enhanced the sensitivity of the NQC15S–Au(NP)–PSI system by
enabling electron storage in the AuNPs [165]. This group also imple-
mented a terpyridine-terminated naphthoquinone, allowing for a
connection to Co(II) ions to form the complex of PSI_tpy–C15NQ_ITO
[166]. The development of these new strategies has contributed to the
immobilization of PSI on surfaces for applications in both photovoltaic
cells and photosensing devices.

9. Photocurrent production

As seen in Fig. 8, much progress has been achieved in enhancing PSI-
photocurrent density since the early 2000's. In less than a decade, over
30 papers have been published reporting various activities of PSI.
From these papers, the reported photocurrent density, when normal-
ized to excitation intensity, has jumped up almost 4 orders of
magnitude from 0.48 [153] to 4469 [33] (μA cm−2 mW−1). Although
it might be impossible to pinpoint all the subtle changes made in
fabricating PSI-biohybrid devices during this time, along with their
individual levels of contribution toward increasing photocurrent yield,
some significant factors are evident.

The combination of NaAs/DCPIP has been the most widely used
electron source and donor for these systems. Aside from two studies
[103,163], all others utilizing NaAs/DCPIP achieved less than 2 μA cm−2

in photocurrent generation. The two exceptions from Frolov et al. [163]
and Ciesielski et al. [103] both assembled a multilayer of PSI, while the
others had just a monolayer deposited. Even with a photocurrent of
2 μA cm−2, Ciesielski et al. had used twice as much DCPIP (5 mM) as
any other study [103]. Although probably one of the most cost effective
PSI donors, DCPIP proves to be a limiting factor in photocurrent produc-
tion as it is considered a much poorer electron donor to PSI compared
to native metalloproteins or other artificial complexes.

Potassium ferricyanide was implemented as both electron donor to
P700 and electron acceptor from FB with a continuous redox cycle from
[Fe(CN)6]4− to [Fe(CN)6]3− at P700 and [Fe(CN)6]3− to [Fe(CN)6]4− at
FB to produce an enhanced photocurrent of 7.9 μA cm−2 [148]. This
can prove to be a fairly attractive feature for large-scale implemen-
tations, as it would minimize the input to drive the reaction. The
metal osmium (Os), considered the densest stable element [167], has
also been used recently both as an immobilization matrix and electron
donor in the form of an “Os-complex modified polymer” [78] and
as an ET mediator, Os(bpy)2Cl2, sitting atop alkanethiol-SAMs [37].
While the Os-complex polymer gave an enhanced photocurrent of
29 μA cm−2 [78], osmium is also the least abundant of the stable
elements [168] and therefore not practical for large-scale applications.
Though synthesized and tested originally for dye-synthesized solar
cells [169], the Co(II)/Co(III) ion-containing electrolyte Z813 was used
with PSI to generate one of the highest (highest if normalized to excita-
tion intensity) photocurrents of 362 (4469-normalized to mW−1)
μA cm−2 [33]. This significant increase in photocurrent, if attributed to
Z813, shows a tremendous potential for the usage of synthesized redox
mediators instead of relatively expensive rare metals.

While the majority of electrode surfaces and immobilization
schemes used with PSI involve SAMs on an Au surface, we will discuss
the variation in strategies implemented by the top performers. A notice-
able trend in enhanced photocurrent generation with values of 2 [103],
7.9 [148], and 120 [163] μA cm−2 is seen in the assembly procedures
that utilize a multilayer of PSI instead of a single immobilized monolay-
er. Amongst these works, there appears to be a noticeable trade-off
between PSI orientationwithin themultilayer and the generated photo-
current. With the two lower values achieved by the Ciesielski group, PSI
multilayer depositions were made without bias to PSI's dipole orienta-
tion in relation to the surface electrode. On the other hand, the device
that generated a 10-fold higher photocurrent by the Frolov group was
constructed with cysteine mutant PSIs that allowed for subsequent
attachment of Pt patches between each PSI layer. Whether or not the
cost of the added steps in generating mutant PSIs and the application
of expensive platinum salts is worth the 10-fold increase in photocur-
rent is debatable.

In looking at the two recent reports that generated the highest pho-
tocurrents ever produced by a PSI-based device [33,139], we notice the
unique surfaces used for PSI immobilization. Heavily p-doped silicon
(Hp-silicon) was found to generate a significant increase in photocur-
rent at 875 μA cm−2, as directly compared to only 0.35 μA cm−2 of
the same conditions on gold electrodes [139]. This result by LeBlanc
et al. was attributed to the favorable valance band alignment of silicon
to the P700 site, allowing for a unidirectional flow of electrons from
silicon to P700, with methyl viologen accepting electrons at FB [139].
Coupling its relative affordability and abundance to other metals, this
work has shown silicon to be a highly attractive material for use in
PSI-biohybrid devices. The next strategy by Mershin et al. [33] takes
advantage of an increased electrode area for PSI deposition (estimated
to be about 50 times per μm of film thickness) offered by the added di-
mension of the nanocrystalline TiO2 and ZnOnanowires. Alongwith the
nanostructured electrode surface, designer peptide surfactants (similar
to that of Kiley et al. [29]) were utilized for PSI stabilization to prevent
protein denaturation and retain functionality after the drying process.
These methods were used in conjunction with the novel Z813 electro-
lyte to achieve a photocurrent of 362 μA cm−2, the second highest
reported value and highest value by over 3 orders of magnitude if
normalized to excitation intensity (4469 μA cm−2 mW−1).

In our systematic breakdown of the PSI-generated photocurrents
(Table 1),we have identified somekey characteristics that have contrib-
uted in increasing this value over 4 orders of magnitude since the initial



Table 1
Component breakdown of biohybrid devices with PSI-generated photocurrent. PSI source came from either plant (green) or cyanobacteria (orange). Electron donors were sodium ascor-
bate (NaAs), 2,6-dichlorophenolindophenol (DCIP/DCPIP), reduced ferricyanide [K4Fe(CN)6], osmium [Os(bpy)2Cl2]/Os-polymer, Z813 electrolytes, and rutheniumhexamine (RuHex). Ac-
ceptors included naphthoquinone derivative molecular wire (NQC15/NQC15EV), methyl viologen (MV), oxidized ferricyanide [K3Fe(CN)6], composite Bis-aniline nanoparticle-ferredoxin
(Bis-aniline-NP; Fd), and methylene blue. Mediator concentrations are also reported when possible, with * indicating that the concentration was not reported or composite mixture was
used. Reported photocurrents (a) are shown in (μA cm−2) with increasing values from a gradient of bright red (lowest—0.04) to bright green (highest—875). Excitation wavelength (nm)
and intensity (mW cm−2) are shown, with the latter going from dark gray (lowest—0.081) to yellow (highest—190). Photocurrent values normalized (b) to 1 mW cm−2 of excitation in-
tensity are then shown from bright red (lowest—0.0056) (μA cm−2 ∗ mW) to bright green (highest—4469.1). Unavailable data is indicated by (–).
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studies done a decade ago. The works done on PSI-biohybrids also ex-
tend to literature (Table 2) that primarily focuses on the characteriza-
tion and analysis of PSI immobilization strategies that do not include a
value for photocurrent. By providing insight into PSI functionality and
detailed characterization after immobilization, these studies should be
looked at in conjunction with photocurrent studies to maximize the
potential of PSI on nanostructured biohybrid devices for the generation
of green electricity.

10. Concluding remarks and future opportunities

Despite a relatively small number of laboratories worldwide work-
ing on applied photosynthesis, the collective progress is remarkable.
In a short span of b10 years, the performance of these PSI based devices
has increased more than 10,000 fold. Moreover, this work has been ac-
complished with a fraction of the research support that other areas of
A

Fig. 8. Progress of PSI-generated photocurrent. (A) Photocurrent density extracted from PSI stud
fitted trend line (open points excluded). (B) A comparison between the reportedmaximal curre
extrapolate both values due to lack of reported data.
bioenergy research have enjoyed for the past decade. For example, the
Bioenergy Research Centers at Oak Ridge, Wisconsin, and Berkeley
have received approximately $375 million from 2007 to 2012 and will
receive $325 million from 2013 to 2018 [170,171]. British Petroleum
(BP) has also donated $500 million to UC Berkeley to lead energy
research consortium to establish the Energy Biosciences Institute (EBI)
[172]. On the other hand, there are still many challenges in funding
for PSI biohybrid-based research. The need to develop rapid and inex-
pensive methods to purify PSI still needs to be explored. To that end,
the recent demonstration that non-agricultural plants, such as Pueraria
lobata (Kudzu), can be utilized as a source for PSI [173] suggests the
possibility that any locally grown plant, including noxious weeds, can
be good source of PSI.

This technology can build directly on the highly advanced and re-
gionally adaptive processes of modern agriculture. The ability to grow
a green leafy crop such as spinach and harvest PSI particles that can be
B

ies from 2005 to 2013. About a 10 fold increase in rate (μA cm−2) is seen per year with the
nt density andwhen normalized to 1 mW cm−2 of applied excitation intensity.*Unable to



Table 2
Various studies on strategies for PSI immobilization, characterization, and enhancement. PSI source, plant (green) and cyanobacteria (orange), electrode immobilization strategy, and PSI
characterization/enhancement methods are described.
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integrated into a device that may function for many weeks [130],
months [10], or even years [103] suggests that the requisite agricultural
investment (in terms of both energy, water, land and capital) may be
highly amortized and possibly insignificant. These are issues that
other competing bioenergy solutions, such as cellulosic ethanol and
algal biodiesel, are still struggling to address and overcome [174–178].

The ability to “grow once and use many” is fundamentally different
to other biomass based energy solutions, which are all single harvest
based processes. We have calculated that a single acre of land in the Sa-
linas valley can yield nearly 100,000 lbs of spinach leaves per year.
Using current protocols of PSI isolation this one acre can yield
~6.8 × 1020 particles of PSI, which if applied as a uniform, single mono-
layer coating of a solar cell could yield 42 acres of solar cells assuming
square packing. Although this technology is still emerging, the ability
to couple the current advanced precision agricultural methods
that exist with the rapidly evolving areas of biotechnology and nano-
technology does in fact suggest that one day we may in fact be able to
grow green electricity.
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